A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.
Al is a commonly used material for rear side metallization in commercial silicon (Si) wafer solar cells. In this study, through-the-silicon spectroscopic ellipsometry is used in a test sample to measure Al+Si interface optical properties like those in Si wafer solar cells. Two different spectroscopic ellipsometers are used for measurement of Al+Si interface optical properties over the 1128-2500 nm wavelength range. For validation, the measured interface optical properties are used in a ray tracing simulation over the 300-2500 nm wavelength range for an encapsulated Si solar cell having random pyramidal texture. The ray tracing model matches well with the measuredmore total reflectance at normal incidence of a commercially available Si module. The Al+Si optical properties presented here enable quantitative assessment of major irradiance/current flux losses arising from reflection and parasitic absorption in encapsulated Si solar cells. less
Zemax Optic Studio 142 Cracked Lips
Download: https://jinyurl.com/2vFgO1
A recent theory claims that the late-Italian Renaissance painter Lorenzo Lotto secretly built a concave-mirror projector to project an image of a carpet onto his canvas and trace it during the execution of Husband and wife (c. 1543). Key evidence adduced to support this claim includes "perspective anomalies" and changes in "magnification" that the theory's proponents ascribe to Lotto refocusing his projector to overcome its limitations in depth of field. We find, though, that there are important geometrical constraints upon such a putative optical projector not incorporated into the proponents' analyses, and that when properly included, the argument for the use of optics loses its force. We used Zemax optical design software to create a simple model of Lotto's studio and putative projector, and incorporated the optical properties proponents inferred from geometrical properties of the depicted carpet. Our central contribution derives from including the 116-cm-wide canvas screen; we found that this screen forces the incident light to strike the concave mirror at large angles (>= 15) and that this, in turn, means that the projected image would reveal severe off-axis aberrations, particularly astigmatism. Such aberrations are roughly as severe as the defocus blur claimed to have led Lotto to refocus the projector. In short, we find that the projected images would not have gone in and out of focus in the way claimed by proponents, a result that undercuts their claim that Lotto used a projector for this painting. We speculate on the value of further uses of sophisticated ray-tracing analyses in the study of fine arts. 2ff7e9595c
Comments